Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, et al. CHEK2 germline variants in cancer susceptibility: dead end rather than checkmate. Cells. 2020;9:2675.
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol. 2004;24:708–18.
Paperna T, Sharon-Shwartzman N, Kurolap A, Goldberg Y, Moustafa N, Carasso Y, et al. Homozygosity for CHEK2 p.Gly167Arg leads to a single cancer syndrome with multiple complex chromosomal translocations in the peripheral blood karyotype. J Med Genet. 2020;57:500–4.
Kukita Y, Okami J, Yoneda-Kato N, Nakamae I, Kawabata T, Higashiyama M, et al. Homozygous inactivation of CHEK2 is linked to a familial case of multiple primary lung cancer accompanied by cancers in other organs. Case Stud Cold Spring Harb Mol. 2016;2:a001032.
van Puijenbroek M, van Asperen CJ, van Mil A, Develee P, van Wezel T, Morreau H. Homozygosity for a CHEK2*1100delC mutation identified in familial colorectal cancer does not lead to a severe clinical phenotype. J Pathol. 2005;206:198–204.
Janiszewska H, Bak A, Skonieczka K, Jaskowiec A, Kielbinski M, Jachalska A, et al. Constitutional mutations in the CHEK2 gene are a risk factor for MDS, but not for de novo AML. Leuk Res. 2018;70:74–8.
Kaczmarek-Rys M, Ziemnicka K, Hryhorowicz ST, Gorczak K, Hoppe-Golebiewska J, Skrzypczak-Zielinska M, et al. The c.470 T>C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Greater Poland population. Hered Cancer Clin Prof. 2015;13:8.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and Guidelines for Sequence Variant Interpretation: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
Agiannitopoulos K, Papadopoulou E, Tsaousis GN, Pepe G, Kampouri S, Kocdor MA, et al. Characterization of c.793-1G > A splice variant of the CHEK2 gene as a pathogen: about a case. BMC Med Genet. 2019;20:131.
Adank MA, Jonker MA, Kluijt I, van Mil SE, Oldenburg RA, Mooi WJ, et al. CHEK2*1100delC homozygosity is associated with an elevated risk of breast cancer in women. J Med Genet. 2011;48:860–3.
Stradella A, Del Valle J, Rofes P, Feliubadalo L, Grau Garces E, Velasco A, et al. Does the multilocus hereditary neoplasia allele syndrome have a severe clinical expression? J Med Genet. 2019;56:521–5.
Sutcliffe EG, Stettner AR, Miller SA, Solomon SR, Marshall ML, Roberts ME, et al. Differences in cancer prevalence among CHEK2 carriers identified by multigene panel testing. Cancer Genet. 2020; 246-7: 12–7.
Graffeo R, Rana HQ, Conforti F, Bonanni B, Cardoso MJ, Paluch-Shimon S, et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast. 2022;65:32–40.
Yang HW, Kim TM, Song SS, Shrinath N, Park R, Kalamarides M, et al. Alternative splicing of CHEK2 and co-deletion with NF2 promotes chromosomal instability in meningioma. Neoplasia. 2012;14:20–8.
Xie L, Zhao T, Cai J, Su Y, Wang Z, Dong W. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells. Onco targets Ther. 2016;9:7115–22.
Delimitsou A, Fostira F, Kalfakakou D, Apostolou P, Konstantopoulou I, Kroupis C, et al. Functional characterization of CHEK2 variants in a Saccharomyces cerevisiae system. Hum Mutat. 2019;40:631–48.
Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double-strand break repairs. Mutat Res Genet Toxicol Environ Mutagen. 2022;873:503438.
Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. J Cell Physiol. 2016;231:15–24.
Scully R, Panday A, Elango R, Willis NA. Choice of DNA double-strand break repair pathway in mammalian somatic cells. Nat Rev Mol Cell Biol. 2019;20:698–714.
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, et al. Chromosomal instability syndromes. Nat Rev Dis Prim. 2019;5:64.
Bahassi el M, Robbins SB, Yin M, Boivin GP, Kuiper R, van Steeg H, et al. Mice with the CHEK2*1100delC SNP are predisposed to cancer with a strong gender bias. Proc Natl Acad Sci USA. 2009;106:17111–6.
Huijts PE, Hollestelle A, Balliu B, Houwing-Duistermaat JJ, Meijers CM, Blom JC, and others CHEK2*1100delC homozygosity in the Netherlands-prevalence and risk of breast and lung cancer. Eur J Hum Genet. 2014;22:46–51.
Rainville I, Hatcher S, Rosenthal E, Larson K, Bernhisel R, Meek S, et al. High risk of breast cancer in women with pathogenic biallelic variants in CHEK2. Breast Cancer Treatment Res. 2020;180:503–9.
#unrelated #cases #biallelic #variants #CHEK2 #condition #constitutional #chromosomal #instability #European #Journal #Human #Genetics