Majorana-like Coulomb spectroscopy in the absence of zero bias peaks – Nature

  • Beenakker, C. Search for Majorana fermions in superconductors. Ann. Rev. of Condens. Physics of matter. 4113-136 (2013).

    ADS CAS Google Scholar Article

  • Aasen, D. et al. Milestones towards Majorana-based quantum computing. Phys. Rev. X 6031016 (2016).

    Google Scholar

  • Aguado, R. Majorana quasiparticles in condensed matter. Round. New Cimento 40523–593 (2017).

    CAS Google Scholar

  • Lutchyn, RM et al. Majorana zero modes in superconductor-semiconductor heterostructures. Night. Round. Mater. 352–68 (2018).

    ADS CAS Google Scholar Article

  • Prada, E. et al. From Andreev to Majorana bound states in superconductor-semiconductor hybrid nanowires. Nat. Rev. Phys. 2575–594 (2020).

    CAS Google Scholar Article

  • Mourik, V. et al. Signatures of Majorana fermions in superconductor-semiconductor hybrid nanowire devices. Science 3361003-1007 (2012).

    ADS CAS Google Scholar Article

  • Das, A. et al. Zero-polarization peaks and splitting in a topological Al–InAs nanowire superconductor as a signature of Majorana fermions. Nat. Phys. 8887–895 (2012).

    CAS Google Scholar Article

  • Deng, MT et al. Majorana-bound state in a hybrid-nanowire system coupled with quantum dots. Science 3541557-1562 (2016).

    ADS CAS Google Scholar Article

  • Nichele, F. et al. Scaled Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119136803 (2017).

    Google Scholar Article Announcements

  • Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367eaav3392 (2020).

    Google Scholar article

  • Albrecht, SM et al. Exponential protection of zero modes in the Majorana Islands. Nature 531206-209 (2016).

    ADS CAS Google Scholar Article

  • Van Heck, B., Lutchyn, R. & Glazman, L. Conductance of a nearby nanowire in the Coulomb blocking regime. Phys. Rev. B 93235431 (2016).

    Google Scholar Article Announcements

  • Flensberg, K. Capacitance and conductance of points connected by quantum point contacts. Physics B: Condens. Question 203432–439 (1994).

    ADS CAS Google Scholar Article

  • Blonder, GE, Tinkham, M. & Klapwijk, TM Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance and supercurrent conversion. Phys. Rev. B 254515–4532 (1982).

    ADS CAS Google Scholar Article

  • Little, WA & Parks, RD Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 99-12 (1962).

    Google Scholar Article Announcements

  • Vaitiekėnas, S., Krogstrup, P. & Marcus, CM Anomalous metallic phase in tunable destructive superconductors. Phys. Rev. B 101060507 (2020).

    Google Scholar Article Announcements

  • Tuominen, MT, Hergenrother, JM, Tighe, TS & Tinkham, M. Experimental proof of parity-based 2e periodicity in a superconducting single-electron tunneling transistor. Phys. Rev. Lett. 691997-2000 (1992).

    ADS CAS Google Scholar Article

  • Higginbotham, AP et al. Parity lifetime of bound states in a nearby semiconductor nanowire. Nat. Phys. 111017-1021 (2015).

    CAS Google Scholar Article

  • Hekking, FWJ, Glazman, LI, Matveev, KA & Shekhter, RI Coulomb blockade of the two-electron tunnel. Phys. Rev. Lett. 704138–4141 (1993).

    ADS CAS Google Scholar Article

  • Hansen, EB, Danon, J. & Flensberg, K. Probing the electron-hole components of subgap states in the Coulomb-blocked Majorana Islands. Phys. Rev. B 97041411 (2018).

    ADS CAS Google Scholar Article

  • San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in non-topological superconductors. Science. representing 621427 (2016).

    ADS CAS Google Scholar Article

  • Avila, J., Peñaranda, F., Prada, E., San-Jose, P. & Aguado, R. Non-Hermitian Topology as a Unifying Framework for the Andreev-Majorana Controversy. Common. Phys. 2133 (2019).

    Google Scholar article

  • Setiawan, F., Liu, C.-X., Sau, JD & Das Sarma, S. Electronic temperature and tunneling coupling dependence of zero- and near-zero bias conductance peaks in majorana nanowires. Phys. Rev. B 96184520 (2017).

    Google Scholar Article Announcements

  • Pendharkar, M. et al. Parity-preserving and magnetic-field-resilient superconductivity in InSb nanowires with sn shells. Science 372508–511 (2021).

    ADS CAS Google Scholar Article

  • Kanne, T. et al. Epitaxial Pb on InAs nanowires for quantum devices. Nat. Nanotechnology. 16776–781 (2021).

    ADS CAS Google Scholar Article

  • Whiticar, A. et al. Coherent transport across a Majorana island in an Aharonov-Bohm interferometer. Nat. Common. 113212 (2020).

    ADS CAS Google Scholar Article

  • het Veld, RLO et al. Quantum arrays of in-plane selective InSb–Al nanowires. Common. Phys. 359 (2020).

    Google Scholar article

  • Carrad, DJ et al. Shadow epitaxy for the in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 321908411 (2020).

    CAS Google Scholar Article

  • Shen, J. et al. Parity transitions in the superconducting ground state of InSb–Al Coulomb hybrid islands. Nat. Common. 94801 (2018).

    Google Scholar Article Announcements

  • Shen, J. et al. Full parity phase diagram of a nearby nanowire island. Phys. Rev. B 104045422 (2021).

    ADS CAS Google Scholar Article

  • Valentini, M. et al. Non-topological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 37382–88 (2021).

    Article ADS MathSciNet CAS MATH Google Scholar

  • Lee, EJH et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnology. 979–84 (2014).

    ADS CAS Google Scholar Article

  • Peñaranda, F., Aguado, R., San-Jose, P. & Prada, E. Even-odd effect and Majorana states in full-shell nanowires. Phys. Rev. Res. 2023171 (2020).

    Google Scholar article

  • Krogstrup, P. et al. Epitaxy of semiconductor-superconductor nanowires. Night. Mater. 14400–406 (2015).

    ADS CAS Google Scholar Article

  • Yu, B., Yuan, Y., Song, J., and Taur, Y. A two-dimensional analytical solution for short-channel effects in nanowire mosfets. IEEE Trans. Electron. Devices 562357–2362 (2009).

    Google Scholar article

  • San-Jose, P. Quantica.jl: A Quantum Network Simulation Library in the Julia Language (2021); https://doi.org/10.5281/zenodo.4762964.

  • #Majoranalike #Coulomb #spectroscopy #absence #bias #peaks #Nature

    Leave a Comment

    Your email address will not be published. Required fields are marked *