Beenakker, C. Search for Majorana fermions in superconductors. Ann. Rev. of Condens. Physics of matter. 4113-136 (2013).
Aasen, D. et al. Milestones towards Majorana-based quantum computing. Phys. Rev. X 6031016 (2016).
Google Scholar
Aguado, R. Majorana quasiparticles in condensed matter. Round. New Cimento 40523–593 (2017).
Lutchyn, RM et al. Majorana zero modes in superconductor-semiconductor heterostructures. Night. Round. Mater. 352–68 (2018).
Prada, E. et al. From Andreev to Majorana bound states in superconductor-semiconductor hybrid nanowires. Nat. Rev. Phys. 2575–594 (2020).
Mourik, V. et al. Signatures of Majorana fermions in superconductor-semiconductor hybrid nanowire devices. Science 3361003-1007 (2012).
Das, A. et al. Zero-polarization peaks and splitting in a topological Al–InAs nanowire superconductor as a signature of Majorana fermions. Nat. Phys. 8887–895 (2012).
Deng, MT et al. Majorana-bound state in a hybrid-nanowire system coupled with quantum dots. Science 3541557-1562 (2016).
Nichele, F. et al. Scaled Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119136803 (2017).
Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367eaav3392 (2020).
Albrecht, SM et al. Exponential protection of zero modes in the Majorana Islands. Nature 531206-209 (2016).
Van Heck, B., Lutchyn, R. & Glazman, L. Conductance of a nearby nanowire in the Coulomb blocking regime. Phys. Rev. B 93235431 (2016).
Flensberg, K. Capacitance and conductance of points connected by quantum point contacts. Physics B: Condens. Question 203432–439 (1994).
Blonder, GE, Tinkham, M. & Klapwijk, TM Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance and supercurrent conversion. Phys. Rev. B 254515–4532 (1982).
Little, WA & Parks, RD Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 99-12 (1962).
Vaitiekėnas, S., Krogstrup, P. & Marcus, CM Anomalous metallic phase in tunable destructive superconductors. Phys. Rev. B 101060507 (2020).
Tuominen, MT, Hergenrother, JM, Tighe, TS & Tinkham, M. Experimental proof of parity-based 2e periodicity in a superconducting single-electron tunneling transistor. Phys. Rev. Lett. 691997-2000 (1992).
Higginbotham, AP et al. Parity lifetime of bound states in a nearby semiconductor nanowire. Nat. Phys. 111017-1021 (2015).
Hekking, FWJ, Glazman, LI, Matveev, KA & Shekhter, RI Coulomb blockade of the two-electron tunnel. Phys. Rev. Lett. 704138–4141 (1993).
Hansen, EB, Danon, J. & Flensberg, K. Probing the electron-hole components of subgap states in the Coulomb-blocked Majorana Islands. Phys. Rev. B 97041411 (2018).
San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in non-topological superconductors. Science. representing 621427 (2016).
Avila, J., Peñaranda, F., Prada, E., San-Jose, P. & Aguado, R. Non-Hermitian Topology as a Unifying Framework for the Andreev-Majorana Controversy. Common. Phys. 2133 (2019).
Setiawan, F., Liu, C.-X., Sau, JD & Das Sarma, S. Electronic temperature and tunneling coupling dependence of zero- and near-zero bias conductance peaks in majorana nanowires. Phys. Rev. B 96184520 (2017).
Pendharkar, M. et al. Parity-preserving and magnetic-field-resilient superconductivity in InSb nanowires with sn shells. Science 372508–511 (2021).
Kanne, T. et al. Epitaxial Pb on InAs nanowires for quantum devices. Nat. Nanotechnology. 16776–781 (2021).
Whiticar, A. et al. Coherent transport across a Majorana island in an Aharonov-Bohm interferometer. Nat. Common. 113212 (2020).
het Veld, RLO et al. Quantum arrays of in-plane selective InSb–Al nanowires. Common. Phys. 359 (2020).
Carrad, DJ et al. Shadow epitaxy for the in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 321908411 (2020).
Shen, J. et al. Parity transitions in the superconducting ground state of InSb–Al Coulomb hybrid islands. Nat. Common. 94801 (2018).
Shen, J. et al. Full parity phase diagram of a nearby nanowire island. Phys. Rev. B 104045422 (2021).
Valentini, M. et al. Non-topological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 37382–88 (2021).
Lee, EJH et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnology. 979–84 (2014).
Peñaranda, F., Aguado, R., San-Jose, P. & Prada, E. Even-odd effect and Majorana states in full-shell nanowires. Phys. Rev. Res. 2023171 (2020).
Krogstrup, P. et al. Epitaxy of semiconductor-superconductor nanowires. Night. Mater. 14400–406 (2015).
Yu, B., Yuan, Y., Song, J., and Taur, Y. A two-dimensional analytical solution for short-channel effects in nanowire mosfets. IEEE Trans. Electron. Devices 562357–2362 (2009).
San-Jose, P. Quantica.jl: A Quantum Network Simulation Library in the Julia Language (2021); https://doi.org/10.5281/zenodo.4762964.
#Majoranalike #Coulomb #spectroscopy #absence #bias #peaks #Nature