Dynamics of Traversable Wormholes on a Quantum Processor – Nature

  • Maldacena, J. The big N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 381113–1133 (1999).

    MathSciNet MATH Google Scholar Article

  • Sachdev, S. & Ye, J. Ground state of the spin-free fluid in a random quantum Heisenberg magnet. Phys. Rev. Lett. 703339–3342 (1993).

    CAS PubMed Google Scholar Article

  • Kitaev, A. A simple model of quantum holography. In proc. KITP: Entanglement in highly correlated quantum matter 12 (eds Grover, T. et al.) 26 (Univ. California, Santa Barbara, 2015).

  • Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev Model. Phys. Rev. D 94106002 (2016).

    MathSciNet Google Scholar Article

  • Almheiri, A. & Polchinski, J. Ad Models2 feedback and holography. J. High energy physics. 11014 (2015).

    MATH Google Scholar Article

  • Gross, DJ & Rosenhaus, V. The massive dual of SYK: cubic couplings. J. High energy physics. 05092 (2017).

    MathSciNet MATH Google Scholar Article

  • Maldacena, J. & Susskind, L. Fresh horizons for entangled black holes. progress Phys. 61781–811 (2013).

    MathSciNet MATH Google Scholar Article

  • Susskind, L. Dear Qubitzers, GR=QM. Preprint at https://doi.org/10.48550/arXiv.1708.03040 (2017).

  • Gao, P. & Jafferis, DL A traversable wormhole teleportation protocol in the SYK model. J. High energy physics. 202197 (2021).

  • Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. progress Phys. 651700034 (2017).

    MathSciNet Google Scholar Article

  • Brown, AR et al. Quantum gravity in the lab: teleportation by size and traversable wormholes. Preprint at https://doi.org/10.48550/arXiv.1911.06314 (2021).

  • Nezami, S. et al. Quantum gravity in the laboratory: teleportation by size and traversable wormholes, part II. Preprint at https://doi.org/10.48550/arXiv.2102.01064 (2021).

  • Schuster, T. et al. Quantum many-body teleportation via operator spreading in traversable wormhole protocol. Phys. Rev. X 12031013 (2022).

  • Gao, P., Jafferis, DL & Wall, AC Traversable wormholes via double-trace deformation. J. High energy physics. 2017151 (2017).

    MathSciNet MATH Google Scholar Article

  • Maldacena, J. & Qi, X.-L. Eternal traversable wormhole. Preprint at https://doi.org/10.48550/arXiv.1804.00491 (2018).

  • Cotler, JS et al. Black holes and random matrices. J. High energy physics. 2017118 (2017).

    MathSciNet MATH Google Scholar Article

  • Kitaev, A. & Suh, SJ The soft mode in the Sachdev-Ye-Kitaev model and its dual gravity. J. High energy physics. 2018183 (2018).

    MathSciNet MATH Google Scholar Article

  • Berkooz, M., Narayan, P., Rozali, M., and Simón, J. Higher dimensional generalizations of the SYK model. J. High energy physics. 01138 (2017).

    MathSciNet MATH Google Scholar Article

  • Witten, E. A disorder-free SYK-like model. J.Phys. A. 52474002 (2019).

    MathSciNet CAS Google Scholar Article

  • Witten, E. Anti-de Sitter Space and Holography. Adv. Theor. Math. Phys. 2253–291 (1998).

    MathSciNet MATH Google Scholar Article

  • Gubser, S., Klebanov, I. & Polyakov, A. Correlators of Uncritical String Theory Gauge Theory. Phys. Lett. B 428105-114 (1998).

    Article MathSciNet CAS MATH Google Scholar

  • Hochberg, D. & Visser, M. The zero-energy condition in dynamical wormholes. Phys. Rev. Lett. 81746–749 (1998).

    Article MathSciNet CAS MATH Google Scholar

  • Morris, MS, Thorne, KS & Yurtsever, U. Wormholes, time machines and the low energy condition. Phys. Rev. Lett. 611446-1449 (1988).

    CAS PubMed Google Scholar Article

  • Visser, M., Kar, S. & Dadhich, N. Traversable wormholes with arbitrarily small violations of energy conditions. Phys. Rev. Lett. 90201102 (2003).

    Article MathSciNet PubMed MATH Google Scholar

  • Aim, Mr. Lorentzian wormholes: from Einstein to Hawking. Computational Physics and Mathematics (American Institute of Physics, 1995).

  • Graham, N. & Olum, KD Achronal averaged a zero energy condition. Phys. Rev. D 76064001 (2007).

    Google Scholar article

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574505-510 (2019).

    CAS PubMed Google Scholar Article

  • Maldacena, J., Stanford, D. & Yang, Z. Conformal symmetry and its breaking in nearly anti-de-Sitter two-dimensional space. Program. Theor. Exp. Phys. 201612C104 (2016).

    MATH Google Scholar Article

  • Maldacena, J. Eternal black holes in the anti-de sitter. J. High energy physics. 2003021-021 (2003).

    MathSciNet Google Scholar Article

  • Hayden, P. & Preskill, J. Black Holes as Mirrors: Quantum Information in Random Subsystems. J. High energy physics. 2007120 (2007).

    MathSciNet Google Scholar Article

  • Susskind, L. & Zhao, Y. Teleportation through the wormhole. Phys. Rev. D 98046016 (2018).

    MathSciNet CAS Google Scholar Article

  • Gao, P. & Liu, H. Regenesis and quantum traversable wormholes. J. High energy physics. ten048 (2019).

    MathSciNet MATH Google Scholar Article

  • Yoshida, B. & Yao, NY Untangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9011006 (2019).

    CAS Google Scholar

  • Landsman, KA et al. Scrambling of verified quantum information. Nature 56761–65 (2019).

    CAS PubMed Google Scholar Article

  • Berkooz, M., Isachenkov, M., Narovlansky, V. & Torrents, G. Towards a complete solution of the large double-N scale SYK model. J. High energy physics. 03079 (2019).

    MathSciNet MATH Google Scholar Article

  • García-García, AM & Verbaarschot, JJM Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D 94126010 (2016).

    Google Scholar article

  • García-García, AM & Verbaarschot, JJM Analytical spectral density of the finite Sachdev-Ye-Kitaev model not. Phys. Rev. D 96066012 (2017).

  • Xu, S., Susskind, L., Su, Y. & Swingle, B. A sparse model of quantum holography. Preprint at https://doi.org/10.48550/arXiv.2008.02303 (2020).

  • Garcia-Garcia, AM, Jia, Y., Rosa, D. & Verbaarschot, JJM Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duels. Phys. Rev. D 103106002 (2021).

    MathSciNet CAS Google Scholar Article

  • Caceres, E., Misobuchi, A. & Pimentel, R. Sparse SYK and traversable wormholes. J. High energy physics. 11015 (2021).

    MathSciNet MATH Google Scholar Article

  • Kandala, A. et al. Material-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549242-246 (2017).

    CAS PubMed Google Scholar Article

  • Cottrell, W., Freivogel, B., Hofman, DM & Lokhande, SF How to construct the dual state of the thermal field. J. High energy physics. 201958 (2019).

    MathSciNet MATH Google Scholar Article

  • Huggins, WJ et al. Virtual distillation for quantum error mitigation. Phys. Rev. X 11041036 (2021).

    CAS Google Scholar

  • O’Brien, TE et al. Error mitigation via verified phase estimation. Quantum PRX 2020317 (2021).

    Google Scholar article

  • Temme, K., Bravyi, S. & Gambetta, JM Error mitigation for shallow-depth quantum circuits. Phys. Rev. Lett. 119180509 (2017).

    MathSciNet PubMed Google Scholar Article

  • Li, Y. & Benjamin, SC Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X seven021050 (2017).

    Google Scholar

  • Kolchmeyer, DK Quantum gravity toy models. Doctoral thesis, Harvard Univ. (2022); https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37372099.

  • Zlokapa, A. Quantum Computing for Machine Learning and Physical Simulation. BSc thesis, California Institute of Technology (2021); https://doi.org/10.7907/q75q-zm20.

  • #Dynamics #Traversable #Wormholes #Quantum #Processor #Nature

    Leave a Comment

    Your email address will not be published. Required fields are marked *